MCP 服务器
MCP 服务器是一种为 LLM 提供工具调用能力的一种方式,也是使用 OpenAI 兼容工具调用的替代方案。
通过将 MCP(Anthropic)工具定义转换为与 OpenAI 兼容的工具定义,您可以将 MCP 服务器与 OpenRouter 结合使用。
在本例中,我们将使用 Anthropic 的 MCP 客户端 SDK 与文件系统 MCP 进行交互,所有这些都在 OpenRouter 的后台进行。
注
请注意,与 MCP 服务器交互比调用 REST 端点更复杂。MCP 协议具有状态,需要会话管理。以下示例使用了 MCP 客户端 SDK,但仍然有些复杂。
First, some setup. In order to run this you will need to pip install the packages, and create a .env
file with OPENAI_API_KEY set. This example also assumes the directory /Applications
exists.
首先,进行一些设置。为了运行此程序,您需要使用 pip
安装软件包,并创建一个 .env
文件,同时设置 OPENAI_API_KEY。此示例还假设已有目录 /Applications
。
import asyncio
from typing import Optional
from contextlib import AsyncExitStack
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from openai import OpenAI
from dotenv import load_dotenv
import json
load_dotenv() # load environment variables from .env
MODEL = "anthropic/claude-3-7-sonnet"
SERVER_CONFIG = {
"command": "npx",
"args": ["-y",
"@modelcontextprotocol/server-filesystem",
f"/Applications/"],
"env": None
}
接下来,我们的辅助函数将 MCP 工具定义转换为 OpenAI 工具定义:
def convert_tool_format(tool):
converted_tool = {
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": tool.inputSchema["properties"],
"required": tool.inputSchema["required"]
}
}
}
return converted_tool
还有 MCP 客户端本身,令人遗憾的是,它竟然有大约 100 行代码。需要注意的是,SERVER_CONFIG 为硬编码到客户端,但当然可以针对其他 MCP 服务器进行参数化。
class MCPClient:
def __init__(self):
self.session: Optional[ClientSession] = None
self.exit_stack = AsyncExitStack()
self.openai = OpenAI(
base_url="https://openrouter.co/v1"
)
async def connect_to_server(self, server_config):
server_params = StdioServerParameters(**server_config)
stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
await self.session.initialize()
# List available tools from the MCP server
response = await self.session.list_tools()
print("\nConnected to server with tools:", [tool.name for tool in response.tools])
self.messages = []
async def process_query(self, query: str) -> str:
self.messages.append({
"role": "user",
"content": query
})
response = await self.session.list_tools()
available_tools = [convert_tool_format(tool) for tool in response.tools]
response = self.openai.chat.completions.create(
model=MODEL,
tools=available_tools,
messages=self.messages
)
self.messages.append(response.choices[0].message.model_dump())
final_text = []
content = response.choices[0].message
if content.tool_calls is not None:
tool_name = content.tool_calls[0].function.name
tool_args = content.tool_calls[0].function.arguments
tool_args = json.loads(tool_args) if tool_args else {}
# Execute tool call
try:
result = await self.session.call_tool(tool_name, tool_args)
final_text.append(f"[Calling tool {tool_name} with args {tool_args}]")
except Exception as e:
print(f"Error calling tool {tool_name}: {e}")
result = None
self.messages.append({
"role": "tool",
"tool_call_id": content.tool_calls[0].id,
"name": tool_name,
"content": result.content
})
response = self.openai.chat.completions.create(
model=MODEL,
max_tokens=1000,
messages=self.messages,
)
final_text.append(response.choices[0].message.content)
else:
final_text.append(content.content)
return "\n".join(final_text)
async def chat_loop(self):
"""Run an interactive chat loop"""
print("\nMCP Client Started!")
print("Type your queries or 'quit' to exit.")
while True:
try:
query = input("\nQuery: ").strip()
result = await self.process_query(query)
print("Result:")
print(result)
except Exception as e:
print(f"Error: {str(e)}")
async def cleanup(self):
await self.exit_stack.aclose()
async def main():
client = MCPClient()
try:
await client.connect_to_server(SERVER_CONFIG)
await client.chat_loop()
finally:
await client.cleanup()
if __name__ == "__main__":
import sys
asyncio.run(main())
将以上所有代码组装到 mcp-client.py 中,您将获得一个行为如下的客户端(为简洁起见,某些输出已被截断):
% python mcp-client.py
Secure MCP Filesystem Server running on stdio
Allowed directories: [ '/Applications' ]
Connected to server with tools: ['read_file', 'read_multiple_files', 'write_file'...]
MCP Client Started!
Type your queries or 'quit' to exit.
Query: Do I have microsoft office installed?
Result:
[Calling tool list_allowed_directories with args {}]
I can check if Microsoft Office is installed in the Applications folder:
Query: continue
Result:
[Calling tool search_files with args {'path': '/Applications', 'pattern': 'Microsoft'}]
Now let me check specifically for Microsoft Office applications:
Query: continue
Result:
I can see from the search results that Microsoft Office is indeed installed on your system.
The search found the following main Microsoft Office applications:
1. Microsoft Excel - /Applications/Microsoft Excel.app
2. Microsoft PowerPoint - /Applications/Microsoft PowerPoint.app
3. Microsoft Word - /Applications/Microsoft Word.app
4. OneDrive - /Applications/OneDrive.app (which includes Microsoft SharePoint integration)